
Modeling DRAM Discharge
1st Gary Mejia

Baskin School of Engineering
University of California

Santa Cruz, USA
gmejiama@ucsc.edu

Abstract—Spiking neural networks have gained popularity
in recent years. Their power efficiency over traditional deep
learning models is from their inherit co location of memory and
computation. The leaky-integrate fire model is the simplest model
of a spiking neuron. This consists of a resistor and a capacitor
in parallel to each other. We are attempting to model the leaky-
integrate fire neuron on DRAM cells. By abstracting away the
DRAM cells as resistors and capacitors in connection with a
switch, we can use DRAM memories as large spiking neural
networks. Using FPGAs and DRAM, we are attempting to bypass
memory manufacturers’ refresh mechanisms to disable refresh to
allow the correct memory behavior seen in the leaky-integrate fire
model. Our current design uses the Samsung SmartSSD platform
with a Xilinx Kintex UltraScale+ FPGA; the kernel consists of
an open source PicoRV32 CPU to communicate with DRAM.

Index Terms—spiking neural networks, DRAM, security, field-
programmable gate arrays

I. INTRODUCTION

Spiking neural networks(SNNs) are artificial neural net-
works inspired by the brain. Due to their inherit combination
of memory and computation elements, SNNs are more power
efficient than traditional deep learning models [1]. An addi-
tional benefit of this combination is the simplicity of modeling.
Leaky-integrate fire neurons are the simplest model for spiking
neurons. Using a resistor and capacitor, we model both the
computation and memory of a spiking neuron.

Dynamic random access memory (DRAM), is a common
form of memory used in most modern computing devices.
Each DRAM cell consists of only a transistor an a capacitor.
Common delay models for transistors abstract them away as
resistors attached with switches. As a result, our goal to use
a DRAM cell to model a spiking neuron using the leaky-
integrate fire model. This requires turning off the DRAM
module’s auto-refresh capabilities. We use FPGAs to modify
DRAM module’s controllers to disable refresh and also run
memory intensive tasks to check data corruption. This time for
data corruption is inline with the leaky-integrate fire neurons
ability to spike.

A. Motivation

Computing tasks on a deep learning model is expensive
through compute and memory costs. While the power effi-
ciency of SNNs is a boon, the possibility to run an SNN on a
dedicated DRAM module would save a lot of computation.
Additionally this project would likely discover additional
hardware security vulnerabilities with current DRAM designs.
Refresh is a command that is carefully monitored by all

DRAM manufactures for security purposes. Disabling entirely
would require disabling logic in the DRAM IC itself or a work
around commands such as RowHammer attacks.

II. BACKGROUND

There are two main fields to have background knowledge
for this project, SNNs and DRAM architecture. However, this
paper will focus entirely on the FPGA design to disable refresh
in DRAM.

A. Dynamic Random Access Memory

There are several forms of memory used in computer
systems. DRAM along with SRAM (static random access
memory) fall under volatile memories, where they lose their
data upon power loss. Figure 1 shows the differences between
the two at the transistor level.

Fig. 1. Left: DRAM Cell Right: SRAM Cell

SRAMs are typically constructed with six total transistors,
four to create two inverters in a feedback loop, and two access
transistors. The feedback in the two inverters is what holds the
value. When a one is stored in the cell the positive bit line will
always output a one, the opposite is true for a zero. These are
called static since the value stored never changes value until
a write command is issued.

In contrast, DRAM cells are typically made with one
transistor attached to a capacitor. Where in the SRAM cell, we
had inverters in a feedback loop to remember our value, the
capacitor’s sole purpose is to remember a voltage level. Since
capacitors leak voltage over type, the cell must be periodically
recharged. This is the reason why DRAMs are dynamic
memory. While recharging cells increase power consumption
in DRAM, they are smaller and hence denser memories
compared to SRAMs.

B. Elmore Delay Model

A common delay model in VLSI is the Elmore Delay
model for transistors. This model abstracts transistors into
resistors,capacitors, and switches [2]. Delay is often found



by taking the summation of all RC time constants along a
connected path. Since transistors have inherit resistance and
capacitance, we believe we can use a DRAM module as a
large spiking neural network.

C. Synchronous DRAM

Most DRAM modules in modern computers are syn-
chronous DRAM (SDRAM). These modules are unique in that
they sample commands at the positive edge of the clock. Sam-
pling at the positive edge helps to synchronize the data flow
with other components throughout the system. The DRAM
module in the Samsung SmartSSD FPGA platform is a DDR4
SDRAM module. This paper will use DRAM to refer to both
SDRAM and regular DRAM memories.

D. Double Data Rate

Double Data Rate (DDR) DRAM are memory modules that
output data on both the positive and negative edge of the clock.
These devices are among the few that utilize the negative edge
of the clock in hardware. Memory bandwidth is an important
metric, such that memory manufacturers are taking extreme
methods to utilize both edges of the clock to output as much
data into and out of memories. However, this comes at a
complexity cost in the memory controller. The initialization of
a DDR memory module requires precise analog timing, which
the controller must respect. In addition, most synchronous
logic designs are only synchronized to the positive edge of the
clock, adding additional complexity to neighboring modules.

III. FPGA DESIGN

Many FPGA boards include some form of DRAM. Our
main design uses the Samsung SmartSSD. This board ships
with a Kintex UltraScale+ FPGA for custom logic designs
and 4GB of DDR4 SDRAM. The main draw of this board
is that the memory interface is not locked down, meaning it
is not already synthesized for us. As a result, we can modify
characteristics of the DRAM controller, such as enabling user-
refresh commands and which interfaces it uses. Development
is streamlined using Xilinx’s Vitis flow.

Fig. 2. Samsung SmartSSD FPGA Development Board

A. Vitis Flow

Traditional FPGA toolflows consist of three main steps:
synthesis, place and route, and bitstream generation. These
flows are due to the compilation of RTL to netlists to place
on the logic fabric. Vitis differs in this regard as it compiles
any design to a kernel. Kernels are then placed on top of an
already existing FPGA platform. Platforms are responsible for
handling IO interconnectivity from the host to kernel design.

The traditional FPGA flow is also different. While one still
does the traditional synthises, place and route, and bitstream
generation, one must first compile and link the kernel. This
is due to Vitis being a high-level synthises tool for compiling
C++ to Verilog. In our design we do not use C++, instead
we directly use RTL. Compiling a design as a kernel requires
several TCL scripts. These scripts are responsible for mapping
memory addresses and saving the design into Xilinx’s local IP
repository.

Most FPGA designs include source RTL for actual hardware
synthesis and different RTL for simulation and verification. For
verification, we simply use Vitis’s hardware emulation tool to
generate a waveform of our design after linking. This requires
us to target the linker for hardware emulation, as opposed to
hardware for hardware synthesis. Our FPGA design consists
of two main components: the main FPGA platform and the
FPGA kernel design.

B. FPGA Kernel

The FPGA kernel is the design that goes on top of the
provided platform. Our kernel consists of two main sets of
components, the softcore CPU and interconnects. Figure 3
showcases all components connected together.

Fig. 3. FPGA Kernel Design

1) Softcore - PicorRV32: The PicoRV32 is an open source
single cycle CPU designed by YosysHQ, it supports the
RISCV32IMC instruction set. Due to the open source nature
of the CPU, there are extensive projects and documentation
for using it. Among its parameters, the PicoRV32 supports
multiple memory interfaces including both AXI Lite and
Wishbone. Since most of Xilinx’s IP uses AXI and AXI Lite,
the PicoRV32 with AXI Lite is used.



Fig. 4. Internal Architecture of PicoRV32

For the C program, we run a basic heap sort as it requires
additional memory to store the heap data structure. To compile
we use the RISC32-GCC cross compiler and linker. Since the
target architecture is unknown, the linker requires an additional
linker script to denote what memory regions are available to
the CPU. We set the read only ”code” region to be from
addresses 0x0 to 0x10000. Main memory is both readable and
writable from addresses 0xF0000000 to 0xFFFFFFFF. This
allows our memory to be split into two regions by using the
MSB of the address.

An additional constraint of our program is where it should
read. Reads in DRAM are destructive, meaning they will
refresh the cell and other local cells. As a result, we need
to know where the C program’s addresses are mapped to on
the DRAM module itself. UltraScale+ FPGA’s use a special
address bus, ”app addr”, to index into DRAM as shown in
Figure 5.

Fig. 5. UltraScale+ Memory Mappings from MC to Physical Device

To check corruption, the PicoRV32 includes an interrupt
timer. When a read into DRAM is triggered, we can enter
the interrupt handler. Once in the interrupt handler, we wait a

certain amount of time and check the data read to an expected.
If a mismatch is found, we can either increment a counter to
make the PicoRV32 enter a trap.

2) Interconnects: Interconnects and cross bars are blocks
designed to multiplex or de-multiplex signals. We have several
interconnects in this design. Instruction memory is a simple
AXI Lite BRAM that is written to prior to the CPU being
ran. This memory has two users, the IO pins that write to it
and the CPU itself. To achieve this behavior, we use a 2 to 1
interconnect. Similarly, the CPU can write and read from two
different memories, instruction memory, or DRAM. A 1 to 2
interconnect solves this problem.

3) Additional Utilities: Outside of interconnects, the only
utilities we need are processor reset IP and width adapters.
The CPU only has a 32-bit address space while DRAM is a
64-bit address space. To adapt to this space, we wrote a pass-
through module that simply appends 32 zeros to the address
and data busses of the CPU’s AXI Lite bus. For reset, we
use Xilinx’s Processor System Reset IP to make the system
reset signal sequential. This allows the CPU to be reset before
the interconnects are, preventing garbage data from being
incorrectly written.

C. FPGA Platform

Despite this project being written in mostly block diagram
and RTL, it is compiled down into a Vitis kernel. This kernel is
then placed onto the pre-existing platform, the normal FPGA
flow runs after this step. Figure 6 shows our FPGA kernel
placed into the platform and synthesized.

Fig. 6. Platform with Kernel Placed

This is the final and placed design on the FPGA. However,
during kernel compilation and FPGA synthesis, we are able to
modify characteristics of the design. Using a TCL script, we
are able to disable the DRAM’s controller’s ability to issue
ECC commands by shortening its address bitwidth from 72
to 64. Additionally, we are able to support user’s abilities to
issue refresh commands. We believe this disables the DRAM’s
own auto-refresh mechanisms and relies on the user to issue
them. As a result, in the TCL script we add in a constant zero
block and connect it to the DRAM’s user refresh port.

1) PYNQ: PYNQ is a Python library aimed at interacting
with Vitis kernels. We use PYNQ to interact with the board
once it is flashed. PYNQ allows us to inject the board with
inputs. Our main use of PYNQ is to write the compiled exe-
cutable in instruction memory and run the CPU. An additional



benefit is that PNYQ allows us to declare IO busses for DRAM
to see data being transferred back and forth. Kernels can be
targeting hardware or emulated hardware which PYNQ can
distinguish.

IV. ISSUES SO FAR

We have encountered several issues in data collection.

A. PYNQ Memory IO

At the moment, PYNQ can only write to instruction memory
and run the CPU properly. Any DRAM IO bus that we declare
shows no data being sent across. Given that this contradicts
hardware simulation waveforms, we do not know if DRAM is
being used at all or not.

B. Read Decode Errors

AXI Lite interfaces have response buses to signal error. Each
bus is two bits wide. When the buses only hold zeros, there is
no error. However, on reads we see decode errors, whereas
writes are perfectly fine. Diagnosis of the width adapter
showed an improper appending of zeros initially, however we
still see these decode errors. Since PYNQ does not print out
what the DRAM bus is written to but what is read from, this
is likely the cause of PYNQ seeing nothing.

V. FUTURE WORK

Although our initial efforts have yielded nothing, we have
several different avenues to disable DRAM discharge.

A. Custom SmartSSD Platform

Since we are trying to modify the platform in between a
Vitis flow, we believe that modifications should be made prior.
This would mean we develop a custom platform and place our
kernel on top. We have tried two main methods.

The first method is modifying the provided ”hw.xsa” file that
comes with the SmartSSD’s platform package. This file holds
all files requires for the hardware to synthesize such as: RTL,
block diagrams, simulations, example designs, and information
for the GUI. These files are just propitiatory zip files that can
be opened with any archive manager. We grepped and changed
any file relating to the Xilinx Memory Interface Generator
(MIG) responsible for generating the memory controller for
the DRAM memory. Additionally, we found the block diagram
responsible for representing the actual DRAM memory on-
board and changed its characteristics to turn off ECC. Upon
re zipping the new files, we found we could run Vitis as is
with no errors outside of a warning stating our ”hw.xsa” file
can be unzipped and modified. However this still showed a
memory controller and memory with ECC turned on.

Our second attempted involved us working with Gregor
Haas, Ph.D student at University of Washington. As a part of
his work with Vitis platforms, he has been modifying platforms
to better work with on-board hardcores such as Arm Cortex
and Esp32’s. We thought his work could translate here and
turn off refresh in the SmartSSD. He had successfully modified
the same parameters we did with extracting the ”hw.xsa” file.
However, our issues here stemmed from the constraint file

being modified. Whereas our old custom platform did not do
anything, here we could not place our clock or the kernel could
not find it.

B. ULX3S

The ULX3S is an open-source FPGA development board
equipment with on-board SDRAM. This SDRAM module
is non-DDR, which means that the controller will be less
complicated than one for DDR. However, the open-source
nature of the board means that there is little vendor-supported
IP. Fortunately, at least for interconnects, there are open-source
projects that offer substitutes for AMD IP. To use the on-board
SDRAM module, we need to create the memory controller
from scratch. While the complexity is smaller than a DDR
controller, it is not a trivial task. We attempted to create the
SDRAM controller using Chisel.

Fig. 7. ULX3S ECP5 FPGA Development Board

1) Chisel: Chisel is Scala embedded DSL aimed at in-
creasing productivity in the creation of hardware generators.
Whereas tradidtional hardware description langauges such
as Verilog and VHDL emit netlists, Chisel emits Verilog.
This allows our controller to be manufacturer agnostic. A
previous project of ours aims to generate memory for non-
DDR SDRAM memory modules.

2) SDRAM Memory Controller Generator: The SDRAM
Memory Controller Generator project is a Chisel hardware
generator that takes in JSON files as input and outputs
SystemVerilog. JSON files describe the timing characteristics
desired by the SDRAM module. Among these characteristics
are strings to indicate the manufacturer and module number
targetted.

Not only does the emitted SystemVerilog file include the
synthesizable behavior of the controller, but also formal ver-
ification checks. These formal checks are primarily for the
purpose of verifying the correct state machine transition.

While the formal checks passed, upon placing the design on
the ULX3S we did not see anything as well. The issues here
are we can not tell the polarity of the SDRAM module itself.



Thus, we cannot verify wether we have correctly implemented
the controller.

C. Intel DE-10

Most of our work is on Xilinx platforms. As a last resort we
have an Intel DE-10 baord on hand. This board also has on-
board DDR3 SDRAM. However, most RTL and FPGA IP is
not portable. We have worked with Ph.D student Tyler Sheaves
in creating a setup in the case we do use the DE-10 board but
did not have time to use it. Most of the issues that we foresee
are the adjustment to Intel IPs.

VI. CONCLUSION

DRAM cells are likely candidates for modeling spiking
neurons. Given the simplicity of the leaky-integrate fire model
for spiking neurons, DRAM cells have the same physical
characteristics as spiking neurons. DRAM memories can be
suitable targets for creating spiking neural networks. Our work,
while incomplete hopes to show that this is the case.

ACKNOWLEDGMENT

We acknowledge Assistant Professors Jason Eshraghian and
Dustin Richmond for supervising this project. Not only do they
assist with ideas and debugging, but they also provided us with
resources. They have been kind enough to provide us with a
dedicated server for the SmartSSD. In addition to them, we
like to acknowledge Ph.D students Tyler Sheaves and Gregor
Haas for their assistance with the Intel DE-10 and custom
SmartSSD platforms respectively.

REFERENCES

[1] Ganguly C, Bezugam SS, Abs E, Payvand M, Dey S, Suri M. Spike
frequency adaptation: bridging neural models and neuromorphic applica-
tions. Commun Eng. 2024 Feb 1;3:22. doi: 10.1038/s44172-024-00165-
9. PMCID: PMC11053160.

[2] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. Boston: Addison Wesley, 2011.


