Space Invaders on an FPGA
CSE 185E Final Paper using IEEE

Gary Mejia

A lab report for CSE 125
Final Project on a Space Invaders
implementation on iCEBreaker FPGA board
For the CSE 125 Teaching Staff and
those curious about FPGA project design flow

A A —
BQ 5| NAND <

Computer Science and Engineering
University of California, Santa Cruz
Rachel Carson College

SPACE INVADERS LAB REPORT

Space Invaders Lab Report

CSE 185 Final Project
Gary Mejia

Abstract—Report the results and design process of a Space Invaders implemenation on an FPGA. Project is located at
the following Git repo: https://github.com/colbarron/spaceinvaders

Index Terms—FPGA, Space Invaders, field programmable gate array, game design, Verilog, testing

1 INTRODUCTION

A s CSE 125, Logic Design with Verilog,
presented dropping the final exam in ex-
change for a final project, I immediately ac-
cepted. Field programmable gate arrays or FP-
GAs have sparked my interest after completing
the first couple of CSE 100, Intro to Logic De-
sign, labs. After completing CSE 100 lab 6, a
jumping game, I wanted to implement another,
slightly more difficult, game. Space Invaders
is a famous retro game that incorporates sim-
ple input and output to create an entertaining
game. This project had the option of it being a
duo project, to which this one is. Edwin Rojas
helped with creating all the display elements
and the enemies.

2 WHAT IS SPACE INVADERS?

A burning question some readers may have
is: “What is Space Invaders?”. Released in
1978, Space Invaders was created by Tomo-
hiro Nishikado using custom hardware. At the
time, the hardware was the considered the best.
Nishikado had Japanese corporation Taito pub-
lished the game.

Space Invaders is a two dimensional ”shoot-
em up” where the player controls the bottom
ship. The aim of the game is to defeat all the
aliens. Aliens randomly shoot at the player. If
the player gets hit, they lose a life. Once all lives
are lost or the aliens land on the ground, the
game is over.

2.1 Why Space Invaders?

The question I pose is here is for me. Why
choose Space Invaders for this project? Since
the final project for CSE 125 is open ended,
making games have been an easy out in a sense.
Game design always has a clear end goal. A
research article written by two teachers, Anne
Sullivan and Gillian Smith, titled “Lessons in
teaching game design” describes the use of
game design in teaching introduction to pro-
gramming. Students are more open to begin
programming a game simply due to the lack
of background knowledge needed in class. This
concept applies to me as well. Space Invaders
is more known rather than an audio processor.

3 HARDWARE

Hardware projects differ from software projects
due to the fact that physical hardware is re-
quired for hardware projects. Who would have
guessed? This section will go into detail of what
hardware is used and its purpose in the project.

3.1 FPGA Board

CSE 125 had the number one goal of using an
open source tool chain with open source hard-
ware. According to Professor Dustin Richmond,
he wanted to not lock students to Xlinix Vivado,
therefore locking all Apple Silicon users from
the class in lab. For the development board,
the 1bitsqured iceBreaker FPGA development

0000-0000/00$00.00 © 2022 IEEE

https://github.com/colbarron/spaceinvaders

SPACE INVADERS LAB REPORT

board is used. It contains a Lattice iCE40UP5k
FPGA chip. For peripherals, it has three periph-
eral module ports or PMODs; where one con-
tains a breakaway input and output board with
three buttons and five light emitting diodes. On
board, one button and two LEDs are present for
basic I/0O.

Fig. 1. iCEBreaker FPGA development board

3.2 HDMI Display Module

Space Invaders requires external display to a
monitor. The lbitsquare team has created a
HDMI display module for the board. It sup-
ports up to 1080p display with an HDMI con-
nection using the VGA protocol. Due to my cur-
rent logic design experience, I opted to display
at 480p. This allows leeway in logic design as
logic now does not have to be highly optimized.
Physically, the display PMOD takes up all the
remaining PMOD ports, thus limited me to
either using the included break away PMOD
or use something else. Since the controls of
Space Invaders only involve moving left, right
and shooting, I opted to keep the breakaway
PMOD.

Fig. 2. HDMI Display Module

4 SOFTWARE

Despite being a hardware project, software is
still used to aid in design. This section will
cover the choice of language and tools used in
the project.

4.1 SystemVerilog

FPGAs require hardware description languages
to describe their intended function. Program-
ming languages are widely known such as
C/C++. Where hardware description lan-
gauages and programming languages differ is
in their output. Generally programming lan-
guages compile to machine code, like x86 as-
sembly. Hardware description “translates” to
logic gates, where I use “translates” as a term to
simplify an entire complex process of creating
hardware. For CSE 125, the hardware descrip-
tion language taught is SystemVerilog and thus
the final project, if on an FPGA, had to be in
SystemVerilog. SystemVerilog is to Verilog like
what C++ is to C. That is to say, SystemVerilog
takes a lot of Verilog syntax and extends it
with additional features. Many of these features
allow us to organize code based of their use
in the project, such as differing combinational
logic and sequential logic.

4.2 Synthesis, Route, and Placement

How does hardware description language be-
come a circuit? This is an excellent question that
is explored heavily in graduate school. Gener-
ally hardware description code goes throught
the process of synthesis, routing and placement,
which is the “translation” to produce a circuit
that I alluded to in the previous section. The
tool used for this job is Yosys and and its
subproject nextpnr. Sythesis is done by Yosys
and the rest is done by nextpnr. These are open
source tools that support the iCEBreaker board,
fulfilling the goal of making the entire tool
chain of CSE 125 open source.

4.3 Circuit Simulation

To test circuits before programming them onto
the FPGA, simulation can be done to catch
some bugs and view intended behavior. The

SPACE INVADERS LAB REPORT

programs used in CSE 125 to accomplish this
tasks are Verilator and iVerilog. Both take test
benches and create waveform files. These wave
forms are viewed in a program called GTK-
Wave. All three programs are open source.
Two simulators are used since simulators them-
selves are not perfect. For example, Verilator
can not catch X (unknown) or Z (disconnected)
signals. With two, there is less chance of a bug
not being caught but the chance is never zero.

5 STARTING THE PROJECT

The project began with designing the state ma-
chine diagrams for the player and taking some
of the modules done and provided for CSE 125
labs. Our counter module is taken from lab 2
of CSE 125 and slightly modified to take in
different reset values and increments. Below is
the list containing the rough draft of the player
state machine diagram.

o Idle-
The state where the player is not moving
and alive.
If not hit and pressing the left button
only, the state transitions to moving left.
If not hit and pressing the right button
only, the state goes to moving right. If
hit and the player life counter is not zero,
go to hit but alive. If hit and the player
counter is zero, go to hit and dead.

o Moving Left -
The state where the player is moving
left.
They remain in this state if the left but-
ton is held and the player has not hit the
boundary. If both left and right buttons
are held or the left button is held at
the left boundary, go to the idle state.
If the left button is let go, the player
goes to idle unless the right button is
also immediately held, then it goes to
the moving right state. If the player is
hit and the lives counter is not zero, go
to hit but alive else go to hit and dead.

« Moving Right -
The state where the player is moving
right.
They remain in this state if the right

3

button is held and the player has not
hit the boundary. If both left and right
buttons are held or the right button is
held at the right boundary, go to the idle
state. If the right button is let go, the
player goes to idle unless the left button
is also immediately held, then it goes to
the moving left state. If the player is hit
and the lives counter is not zero, go to
hit but alive else go to hit and dead.

o Hit but Alive -
The state where the player was hit but
still had lives to spare. To leave this state,
the player had to press the shoot button
and be sent to idle.

o Hit and Dead -
The state where the player was hit and
had no lives left. This state is an ending
state and the only way to leave it was to
restart the board.

Additionally, my partner took the initiative
on working on the display controller logic.
Since video projects are common on FPGAs,
we found several display controllers online to
which we took one from the site called Project
F by Will Green. Compared to the video con-
troller made in CSE 100, this one is far more
concise and to the point since actual Verilog
syntax is used. Additionally, the same site had
several basic display test modules to test our
display PMOD and see if we had somehow de-
stroyed the board. With these items, we began
implementing the player.

6 DEBUGGING THE PLAYER

To begin debugging, I made a simple test bench
which is taken from the test bench used to
test our shift registers for lab 2 of CSE 125.
The entire purpose of the test bench is to test
that the player has not lost a state nor gone
to multiple states and to produce a waveform.
This is due to us deciding to use one-hot state
encoding, where each state is encoded to its
own flip flop.

The test bench proved invaluable to the de-
bugging process; however there was the major
issue that Verilator did not catch X’s. Whenever
you have sequential logic, no matter what it is

SPACE INVADERS LAB REPORT

initialized too, at the very first clock cycles, flip
flops will be unknown and thus X’s. Verilator
never passed the test bench, no matter how
many fixes I tried, thus we relied a lot on the
iVerilog waveform.

An interesting problem that persisted with
us to the end was caught in the player wave-
form: reset. All reset is in this project is the
onboard button. That button has the job of
resetting all flip flops in use. However on the
test bench I had the problem of needing to
decide what to input into the reset port of the
player. One of the provided modules for CSE
125 is a resetting module used for creating a
reset signal in test benches. Additionally, I had
a test input of reset as well, which many of the
provided test benches have as well. Whenever
I would input reset 1 | reset i, where reset |
is my own reset test input and reset_i being
the output of the reset generator, the player
waveform would output useless data. Once
I went against all previous test benches and
changed the or operator to the and operator,
the waveform would produce useful data.

Fig. 3. Player Waveform from GTKWave using iVerilog

Getting the player to display did not take
long. However in getting basic player display
we ran into the first reset problem. In all our
CSE 125 labs, the on board button is used for
resetting is unsafe and asynchronous to the
clock. To fix this, the button is ran through
two flip flops to synchronize it to the clock and
through an inverter since its negative polarity.
We first used this synchronized signal as our
reset but nothing ever showed up, however
using the button directly did work. More reset

4

issues would rise at different modules, this was
just the first. Thanks to the test bench, the
player did not require much debugging after
initial display. All changes done here are minor,
such as where the player is placed and adding
on detail. What did take a while to debug was
the bullet firing.

6.1

Test benches are helpful tools however tools
only help in solutions. They are not all mighty
solvers onto themselves. We added the bullet
state machine into the test bench to track its
state and movement on the waveform. For the
entirety of the debugging process we saw the
bullet moving correctly though its states and
line of movement. It correctly stored its hori-
zontal position and kept it for the entirety of
its flight. However we saw bizarre behavior on
the monitor. One example would be the bullet
only flew during a button press; to fly the shoot
button must be held else it would return to
its stationary position. Another example would
be where the bullet never stopped at the des-
ignated top boundary and would roll over in
the monitor. Fixing these issues were not too
bad onto themselves. Most of the time, the reset
logic for the bullet movement counter would be
off by a term causing the bullet rollover. We did
use a finite state machine with two states: idle
and flying. The bullet would go to the flying
state if the shoot button was pressed in the
idle state. To return to idle, the bullet either
had to hit an enemy or hit the top boundary.
During debugging we debated in removing the
state machine since a single flip flop would be
needed for the states, however we decided in
keeping it. Once the bullet worked as intended,
we moved on to the hardest part of this project:
enemy movement.

Debugging the Bullet

7 ENEMIES

Enemy movement is actually the main reason
I decided to pick Space Invaders over other
games. Pacman, for example, only four enemies
but with rather complex artificial intelligence.
In Space Invaders, all enemies do is move left

SPACE INVADERS LAB REPORT

to right and randomly shoot, which to mean at
the beginning of the project did not sound hard
to implement. Those are famous last words.
To begin the enemies, we decided to just have
one enemy module and combine fifty-five of
them to create the entire enemy array seen in
the actual game of Space Invaders. The state
machine for a single enemy at the beginning
was simple and is as follows:

« Move Right -
The state where an enemy is moving to
the right.
If it hits the right boundary, it descends
and transitions to move left. If the enemy
is shot, it goes to the dead state and
disappears from the screen.

e Move Left -
The state where an enemy is moving to
the left.
If it hits the left boundary, it descends
and transitions to move right. If the en-
emy is shot, it goes to the dead state and
disappears from the screen.

e Dead -
The state where the enemy is dead.
It will be gone from the screen and can
not shot nor be shoot.

The reason for the lack of idle state is due
to the fact that enemies will start moving to the
right immediately. Upon finishing the state dia-
gram for the single enemy is where I started to
have doubts on the scope of the project. Sure the
lack of an idle state for the enemy makes sense
due to them never staying stationary outside
of the dead state but how would we control
the entire game without a game state machine?
Implementing a game state machine would be
rather simple but the FPGA only has so many
resources to throw around. My partner and I
decided not to worry about resources until the
tool chain told us to, thus we went on to draft
how to link up fifty-five enemies together.

71

Linking enemies became a clear goal after play-
ing two rounds of Space Invaders. In most
implementations each row of enemies move

Enemy Linking Ideas

5

at different times than others but some the
whole block of enemies move at once. Since
movement is shared, linking enemies would be
an effective way to simplify input and output.
The first major idea was to create a column
of enemies and then instantiate eleven linked
columns. In creating the column, already we
hit a roadblock. How do we link things? A
simple data structure to link objects is a linked
list; in our case we decided a doubly linked
list. At the beginning we thought it would be
relatively simple. Since we are not creating an
entire doubly linked list data structure, we do
not need to worry about the operations for it.
Yet in that we found another issue: how do we
point to nothing? The head and tail of a doubly
linked list point to a pointer to nothing yet a
pointer to nothing is already an abstraction.
Fundamentally, we had been using relatively
high abstractions to solve our problem which
was a common theme in trying to link the
enemies. In our enemy module parameters we
added a bus which just acted as an identifica-
tion number for the ship but we have no way
to use the number effectively. Both me and my
partner have ample C/C++ experience so at the
time we thought the use of the id number could
lead to use affecting a single enemy however
that is a big abstraction onto itself as well.
Another bigger issue came from me trying to
solve the problem of differentiating the deletion
of an inner column of enemies to that of an edge
column of enemies. Below are two examples
of how defeating different columns affect the
enemy movement.

Fig. 4. Inner column of enemies is defeated thus boundary is
unaffected

SPACE INVADERS LAB REPORT

SCORE =200

Fig. 5. Left most column of enemies is dead thus enemies have
more area to cover before hitting a boundary

We thought use of pointers could remedy
this problem. Two counters would point to each
left most and right most column and move
depending on a signal sent out from the col-
umn. Again we thought it was a simple enough
implementation yet the case of knowing when
to jump a dead column became too hard to
solve in two weeks time.

A total of three complete days were spent
on just drafting solutions for enemy movement
without any programming being done. We ran
our idea with Professor Richmond for some
guidance to each we received another good
approach, use memory. Although we have not
started collision logic we had the idea of giving
each enemy the bullet coordinates outputted by
the player, however we failed to account for
the high fan-out this would require. By using
memory, we remove the fact that each enemy is
a hardware, thus freeing up resources, and take
advantage of large amount of time we have in
each frame cycle relative to our operations. The
operations done in-between frame cycles are
quick and simple, thus accessing each enemy
in memory would not pose a timing issue.
We attempted this solution by writing basic
programs to write initial memory files but did
not get far due to timing constraints. With not
much time left, we decide on just focusing on
getting one enemy to move left and right. At
best maybe to shoot.

8 RESULTS

How did it turn out? In the end we came up
with a comprise: the player can not die however

6

it must defeat the enemy to win; the enemy will
move faster each time it hits the border. With
one enemy, collision became simple. Of course
reset became an issue here as well, a huge
problem of not resetting the enemy’s position
when shot or at its end point. We never got
the reset button to work with the enemy itself.
One idea I had was to look on how global
reset worked in CSE 100 labs. In those labs we
were given each a clock module is a button
input for reset. On further investigation reset
is handled by a module called "STARTUPE2".
Googling this module lead me to a Xilinx page
which meant we could not use it directly as our
FPGA is from Lattice. Thus I suggested to use
the CRESET port on the board itself. From my
previous experience, onboard reset pins needed
to be shorted to reset so with a leap of faith I got
a jumper cable and shorted the pins. Thankfully
it reset the enemy correctly. With that we de-
cided to call the project finished and add any
finishing touches. My partner just added in a
win screen and lose screen depending on if the
enemy landed or got hit.

9 HOW TO USE THIS PROJECT

To run this project you will need a couple of
things. For hardware you will need the 1bit-
squared iCEBreaker FPGA board with an Lat-
tice iCE40 FPGA and its HDMI display PMOD.
This project is done on MacOS thus the installa-
tion of all software requires Homebrew and the
following commands:

brew install icarus-verilog
verilator gtkwave

brew tap
ktemkin/oss—-fpga

brew install
—-—HEAD icestorm yosys
nextpnr—-ice40

Cloning the project with the following com-
mand:

git clone
https://github.com/colbarron
/spaceinvaders

SPACE INVADERS LAB REPORT

Move to the top_module directory and run
the command: make prog with your board
plugged into your computer and plugged into
a display monitor. With that you should now
be able to play the game.

10 CONCLUSION AND REFLECTION

Upon completion of this project, I greatly un-
derestimated the complexity of Space Invaders.
Of course with open ended projects, one enters
them with a lot of hope and excitement which
leads to heavy optimism. My project proposal
included multiple levels with the win condi-
tion of overflowing the score counter. Funny
enough, the win condition of overflowing the
score counter was only added because I thought
the project was easily enough that the game
itself would be too hard to lose. The look Pro-
fessor Richmond gave us upon the proposal
goals should have told us that we were too
ambitious.

Talking with other CSE 125 students lead me
to realize each project has different challenges.
Some students had the challenge of communi-
cation between their boards and their PMODs,
others had the challenge of resource manage-
ment. Our challenge was resource management
and lack of abstractions. Every couple of hours
we kept telling ourselves: “We would be done
by now if we were using C or C++". This project
helped me realize how high in abstraction pro-
gramming languages are, including C/C++. In
my introduction to C class I remember abso-
lutely hating pointers and wished they never
existed. However in this project every day we
wished we could use C pointers to solve all our
problems. Programming languages are a mar-
vel that I feel many students take for granted.
However the main goal of a programming lan-
guage is to talk with hardware. At the low
level of hardware there are many aspects to
appreciate. For this project, if we had taken
into account the use of memory modules, the
speed of our operations are unreal when I think
about it. Despite the operations being fast, the
challenge would be to effectively pipeline the
system to work properly.

7

How do I feel at the end of this project?
Truthfully a bit disappointed with myself. Sure
the project is complex. Space Invaders is a com-
plex system. I had only two weeks to create
a complex system that took years to develop
originally. However it is not all disappointment.
I do feel more confident in my ability to plan
out a project, thus if given a quarter to do this
project I feel I would have the results I wanted.
Additionally I learned several things, the major
one being start simple. Simplicity is easier to
debug and understand.

I will admit, I did cause a lot of the over
complexity in this project. Many of my ideas
did cause complexity such as adding pointers
to each enemy. However most computer sys-
tems are already complex. The data sheet just
for the Lattice FPGA is 52 pages long. At least,
this project services as experience in working
with a complex system and I hope to work with
more of them in the near future.

ACKNOWLEDGEMENTS

I would like to thank Dustin Richmond and the
CSE 125 teaching staff for giving me and others
the opportunity to do a final project. As a poor
test taker, I would rather attempt to reach a
goal over the course of two weeks instead of
taking a three hour exam. I have encountered
bizarre problems and came up with the most
shoddy yet I will self admit, funny, solutions for
the first time in class. All readings that I have
done, have served the purpose of guidance and
inspiration for solutions. Most importantly of
all, I am grateful for the prize of keeping the
board even if the project did not produce the
wanted results. Hopefully in the future, the
project will come to a fruitful end.
Additionally I would love to give a thanks
to my project partner, Edwin Torres. He took
charge of creating the enemy and all display
logic. Torres helped narrow the focus of the
project and assisted in helping cut out content
to make the project doable in the small time
frame. The idea that “you shoud not reinvent
the wheel” is something he took to heart in this
project which is an amazing quality to have in
engineering. Often solutions are out there and

SPACE INVADERS LAB REPORT

you have to look for them, which is what he did
and did well.

REFERENCES

(1]

(2]

(3]

(4]
[5]

“The Centre for Computing History.” Cen-
tre For Computing History. Centre For Com-
puting History. =~ Accessed = March 10, 2023.
http:/ /www.computinghistory.org.uk/det/47162 /40-
Years-of-Space-Invaders/.

Sullivan, Anne, and Gillian Smith. “Lessons in Teaching
Game Design.” Proceedings of the 6th International Con-
ference on Foundations of Digital Games, June 29, 2011,
307-9. https:/ /doi.org/10.1145/2159365.2159421.
“Icebreaker FPGA.” Crowd Supply.
Crowd Supply. Accessed March 19, 2023.
https:/ /www.crowdsupply.com/1bitsquared /icebreaker-
fpga.

Green, Will. “Beginning FPGA Graphics.” Project F. Project
F, March 2, 2023. https:/ /projectf.io/posts/fpga-graphics/.
“STARTUPE2.” AMD Adaptive Computing Docu-
mentation Portal. Xilinx. Accessed March 22, 2023.
https://docs.xilinx.com/r/2021.2-English /ug953-vivado-
7series-libraries/STARTUPE2.

	Introduction
	What is Space Invaders?
	Why Space Invaders?

	Hardware
	FPGA Board
	HDMI Display Module

	Software
	SystemVerilog
	Synthesis, Route, and Placement
	Circuit Simulation

	Starting the Project
	Debugging the Player
	Debugging the Bullet

	Enemies
	Enemy Linking Ideas

	Results
	How to use this Project
	Conclusion and Reflection
	References

