
SystemVerilog Assertions Generator
Gary Mejia

University of California, Santa Cruz
Jack Baskin School of Engineering

Santa Cruz, USA
gmejiama@ucsc.edu

Abstract—SystemVerilog Assertions (SVA) Generator is a Scala
Class created to add formal verification support for the Chisel
SDRAM Controller Generator. A user may need additional
reassurance of proper controller behavior and an addition check
is via formal verification. Using the provided case class created
by the JSON file representing to SDRAM memory module’s
datasheet, a set of SystemVerilog assertions is generated and
injected into the generated RTL.

Index Terms—formal verification, SystemVerilog assertions,
register-transistor logic, memories, open-source development

I. INTRODUCTION

Off-chip SDRAM memory modules are seen everywhere in
any sort of complex digital circuit. Using DRAM memory is
not easy, one can not randomly index at will. Several different
timings of the DRAM internals must be respected for the
data to be correctly written and read. For this reason, circuits
require a memory controller to abstract away these timings
so that the outside user can see general random access at
will. This project is an extension of the SDRAM Controller
Generator, a Scala/Chisel program [1]. It takes in JSON files as
inputs and outputs SystemVerilog to describe the behavior of
DRAM access. The extension is generating the corresponding
SystemVerilog assertions required to support formal verifica-
tion of several important properties of the controller’s behavior.
Using SymbiYosys as the front-end for SMT solvers, we have
formally verified 16 SDRAM controllers. These controllers
target ISSI and Winbond SDRAM memory controllers run-
ning at different clock frequencies, CAS latencies, and burst
lengths. In formally verifying all specifications, we have fixed
major bugs with read and writes not being performed.

A. Motivation

All good hardware designs are also verified. A user is less
likely to trust a hardware module with no verification for
proper behavior. Chisel generates only synthesizable Verilog.
Meaning verification is left to using ChiselTest or ChiselSim.
However, these libraries test the FIRRTL intermediate repre-
sentation of the Verilog target. Additionally, since Chisel is
meant for generating Verilog for parameterized hardware, a
user must write a Verilog testbench with parameters in mind.
These testbenches unfortunately only cover specific cases for
a large amount of code.

A middle ground is the use of formal verification. Formal
verification is the use of mathematical models to analyze the
space of possible behaviors of a design. With the use of

SystemVerilog assertions, the SDRAM Controller Generator
may use a small amount of code to check several possible
cases.

II. BACKGROUND

This section will go over background on how DRAM
memories function, an overview of the SDRAM Controller
Generator project, and the basics of SystemVerilog assertions.

A. SDRAM Functionality
The goal of a memory controller is to abstract away the

internal workings of the SDRAM memory module. This
includes the initialization sequence of the memory module,
sending appropriate commands to the memory, and waiting the
required time between commands. Fig. 1 shows the internal
architecture of a standard SDRAM memory module. We see
several inputs used for addressing and sending commands.
These address lines feed latches because they are briefly saved.
Memory cells are organized in banks.

Fig. 1. DRAM Functional Block

For a bank to be accessed, it must be ”opened” by an active
command. Active commands take in row addresses along with
a bank address to pre-charge the corresponding word lines in
the provided bank and row. Once this pre-charging completes,
a read or write command is sent with the corresponding
column to access, and write data in if needed. A read will
require an additional latency, known as the column access
strobe or CAS latency for read data to be valid. After all
this the memory may return to idle to do additional reads or
writes.

B. SDRAM Controller Generator

Given the latencies between each steps and the complex
interface to send commands to the memory, a finite-state
machine helps to abstract access. This finite-state machine
is known as the memory controller. For deployment, a user
must write RTL in hardware description languages such as
SystemVerilog or VHDL. However, these languages have steep
learning curves and sparse documentation online. Thus, to
remedy this, we have written a Chisel generator aimed at
SDRAM memory controllers.

The SDRAM Controller Generator is a Scala/Chisel pro-
gram. For input it takes in a JSON file describing several
parameters found in an SDRAM memory’s datasheet. This
JSON file is parsed and used to create a Scala case class for
use in hardware generation. Its output is a SystemVerilog file
with the RTL used to describe the behavior to correctly index
the SDRAM memory. However, the user is not provided a
SystemVerilog testbench to verify proper behavior. To remedy
this, an additional generator is added to generate and inject
SystemVerilog assertions into the RTL for use in formal
verification.

C. SystemVerilog Assertions

SystemVerilog assertions are statements about a design that
a designer is expecting to be true. Compared to software
assertions, which are preconditions to program state, Sys-
temVerilog assertions are properties of the design [2]. Instead
of preconditions, they are targets for proofs using SMT solvers.
This requires special tools. Commercial offerings include
Cadence Jasper, Mentor Graphics Questa, or Synopsys VCS.
YosysHQ offers SymbiYosys as an open source alternative,
which is used in this project.

There are two types of SystemVerilog assertions: immediate
and concurrent. [3] Immediate assertions are not dependent on
a clock edge or reset; they are evaluated on all time steps. This
means they are only able to model combinational logic. Below
is an example of an immediate assertion.

immediate_assertion_name:
assert (current_state != 0)
else

$error("%m checker failed");

The first line is a block name used by the formal verifier
to indicate where an assertion failed. Second is the actual
assertion itself, followed by an option else statement with an
error message for the checker. Given that immediate assertions
are aimed at combinational logic, they are seldom used in favor
of concurrent assertions.

Concurrent assertions are tied to clock edges and resets.
This allows them to connect strings of events together over
time and more expression. Below is an example of a concur-
rent assertion.

concurrent_assertion_name:
assert

property (@(posedge clk)

disable iff (rst)
req |-> ##3 gnt)

else
$error(
"%m no grant after request"
);

Like the immediate assertion, the beginning line is a label.
The key difference is in the assertion; properties are speci-
fications to be held true and checked by formal tools. It is
sampled at the positive edge of the clock and disabled if and
only if reset is asserted high. To connect events through time
the ”req |− > ##3 gnt” string means: if req is high then 3
cycles after, gnt must be true. This assertion in short, describes
a specification to be checked for.

D. SystemVerilog Assumptions

Since assertions are proven by a formal tool, the cone of in-
fluence may include impossible or irrelevant cases. To tighten
the cone of influence SystemVerilog has the assume keyword.
Assumptions have similar syntax to concurrent assertions and
work in a similar manner. Instead of exiting the formal verifier,
assumptions ignore failure, effectively reducing the cone of
influence in the design. As seen in section IV, when assertions
fail it is generally due to an impossible case being found.

E. Tooling

As stated before, YosysHQ’s Symbiyosys is used as the
frontend for SMT solvers. To read System Verilog assertions,
SymbiYosys uses a ”FORMAL” SystemVerilog prepressor
block. An example before showcases the block:

‘ifdef FORMAL
\\asserts in between
‘endif

All assertions are placed at the end of the module. This
block allows SymbiYosys to separate assertions from the rest
of the design. In addition, SymbiYosys interfaces with several
SMT solves including yices2 and abc. A .sby file can be used
to automate runs.

[options]
mode bmc
depth 20
[engines]
smtbmc yices
[script]
read -formal SDRAMController.sv
prep -top SDRAMController
[files]
SDRAMController.sv

The script above is the default script used in our experi-
ments. We chose bounded model checking as we do not check
for liveness properties, only safety. Depth is kept at 20, which
is the default set by SymbiYosys. For the SMT solver we
picked yices2 as this is used in courses at UCSC. The rest of

the script is commands to read and evaluate the assertions in
the required files.

III. MEMORY CONTROLLER SPECIFICATIONS

The SDRAM memory controller has the following specifi-
cation:

1) In the initialization state, the state must transition to
the idle state after 100 microseconds plus 3 cycles have
passed

2) After the state leaves the initialization state, the state
must not transition to this state once it leaves it

3) In the idle state, if a read or write request is sent then
transition to the active state after 1 cycle

4) In the active state, the state must transition to the read or
write state after the appropriate amount of cycles have
passed

5) In the read state, the state must transition to the idle
state after CAS + 2burst length(burst length is between 0
and 3), cycles have passed

6) In the read state, the controller must set read data valid
signal high after CAS cycles have passed

7) In the write state, the state must transition to the idle
state after 2burstlength cycles have passed

IV. SYSTEMVERILOG ASSERTION GENERATION

Chisel on its own only generates synthesizable RTL. We
created a new class called ”SVA Modifier” that takes in a
string representing a file path and SDRAM parameter case
class. The class has member functions to start formal blocks,
end formal blocks, and write in assertions into the RTL.

To begin a formal block, the RTL file is opened with
Scala IO functions, read into an array, and has the last two
lines deleted. By default, Chisel ends all RTL with the string
”endmodule\n”. The begin formal block function replaces
these final two lines with ”‘ifdef FORMAL”. Ending a formal
block appends ”endmodule\n” back into the RTL file.

A. Assertion Construction

Since the case class with all SDRAM parameters is fed into
”SVA Modifier”, class all required cycle latencies are acces-
sible. Scala string interpolation is used to place parameterized
latencies into assertion properties and assumptions. Once these
strings are constructed they are written back into the RTL file.

B. Assertion Injection

As stated before, Chisel generated synthesizable RTL.
Verilog is the targetted HDL and Chisel emits Verilog .v
files. Since SystemVerilog assertions are required to be in
SystemVerilog .sv files, the generated file has its file extension
converted to .sv using a file name change Scala function.
Once this occurs, the main program creates an instance of
the ”SVA Modifier” class with the new .sv file’s path as a
string argument and the SDRAM parameter case class. The
begin formal block function is first called, to remove the last 2
lines of the .sv. Any proceeding function calls are to functions
that write in assertions and assumptions. After these calls, the
formal end block function is called to complete the file.

V. ASSERTION DEBUGGING

How are these assertions debugged? When an assertion is
inserted by itself, the formal tools check every possible case.
If these cases are found to be invalid cases, assumptions are
used to filter out these cases. Section V-A will go over an
example of creating the active to read or write assertion.

A. Active to Read or Write Assertion Example

As stated in section III, the specification for the active to
read or write state transition is as follows: in the active state,
the state must transition to the read or write state after
the appropriate amount of cycles have passed. Figure 2 is
the generated SystemVerilog assertion for this property. On its
own, this assertion immediately fails.

Fig. 2. Generated assertion for active to read or write

When the assertion fails, the SMT solver outputs the
counterexample trace. This trace is the sequence of events
that caused the assertion to fail. Figure 3 shows the first
counterexample with the bare SystemVerilog checked as is.

Fig. 3. First counterexample trace - no read or write signal

The counterexample is read as follows:
• The SMT step and clock are signals made by SymbiYosys

to provide the circuit a clock signal and a counter to check
how deep the check has one through, our case 20 cycles

• We include the ”io state out”, ”started read”, and
”started write” signals as these are our signals of interest

• We see that the state is still at state 3, ”started read”
and ”started write” are both low. This indicates that after
the 4 cycles of expected latency, the active stayed in the
active state. However, as shown in the source code of
the idle state, the transition to the active state sets one of
two registers that output the signals ”started read” and
”started write” high. Meaning, this case is not possible
because arriving in the active state requires either register
to hold a high value.

This analysis reveals that this assertion at this point in time
is reading an impossible case. To filter out this case, we must
assume that either signal is high during this state.

B. Building Assumptions

As seen earlier, we need the tools to exclude the case where
the read and write registers hold low values. An assumption
state is required to do this. We assume that ”started read”
or ”started write” is high during the active state. Figure 4
shows the included assumption for the active to read or write
assertion.

However, there is still a counterexample found by Sym-
biYosys. In figure 5 we see the active to read or write counter
in the middle of a count. This is expected behavior. Yet this is a

Fig. 4. Assumption 1

counterexample. How is this a counterexample? Our assertion
states that if the state is in the active state, the state must be in
the read or write state 4 cycles after. Here the state end up in
the idle state 4 cycles later. This happens since the tools finds
the case where the active state is in the middle of a count with
a small burst length. A case like this would cause the state to
be in the active state, short circuit the write state, and end up
in the idle state. We want to assertion to state that once the
state enters the active state, it transitions to the read or write
state 4 cycles later. Thus we add in another assumption: we
assume the active to read or write state counter starts at 0.

Fig. 5. Second counterexample: active counter is in the middle of counting

In the end for this example we have the following as-
sumptions shown in figure 6. Once this final assumption
is included, SymbiYosys finds no counterexamples and the
assertion passes.

Fig. 6. Final assumption for active to read or write state specification

VI. RESULTS

Given this program is a hardware generator, there are several
designs to explore. We generated 8 memory controllers for
ISSI [4] and Winbond [5] memories. Below is a list of the
parameters changed:

• Clock Frequencies - ISSI is clocked at 100MHz or
166MHz, Winbond is clocked at 133MHz or 200MHz

• CAS Latency - Both ISSI and Winbond memories support
CAS latencies of 2 or 3

• Burst Lengths - All memory controllers have burst lengths
from 1,2,4, and 8 items

All 16 designs passed all 7 specifications after the cone of
influence had been correctly tightened.

A. Found Bugs

With formal verification we found 2 major bugs: incorrect
read and write behavior. Prior to formal verification, we used
ChiselTest to test specific behavior of the memory controller.
This behavior only checked for data validity after the CAS
latency has passed for a read and write. With the assertions
included we saw that our specification for read and write
behavior did not match. To fix these issues, we added two
new counters, read and write state counters. These counters
have the sole purpose of checking how long the state is in the
read or write state and exit after the appropriate amount of
cycles, rather than exiting upon reaching the CAS latency.

B. Final Assertions and Assumptions

Each assertion required at least one assumption to pass.
This section will go over each assumption for all other
specifications mentioned in section III.

1) Spec 1: Init to Idle: The init to idle specification needed
to assume the 100 microseconds counter had finished and 3
cycles passed. This is to remove all the behaviors between
that time frame as 100 microseconds in MHz is about 10000
cycles.

2) Spec 2: Never return to init: The never returning to the
init state required the assumption that the state is not in the
init state. Since the memory controller must reset to the init
state and stay there for a set amount of time, we must assume
we don’t start in the init state for this assertion to be correct.
Else we have an obvious counterexample just resetting the
controller.

3) Spec 3: Idle to Active: The assumption for the idle to
active transition is that a refresh command is not outstanding.
This is required due to the finite state machine having experi-
mental support for self-refresh, and delays the transition by an
extra cycle. Future work would likely change this assumption.

4) Spec 4: Active to Read or Write: This is the example in
section V-A.

5) Spec 5: Read to Idle: The assumption here is the read
state counter must start at 0. Else, the SMT solver will find
the case of the counter being in the middle and transition
prematurely but correctly.

6) Spec 6: Read Data Validity: The assumption for read
data being valid after the set CAS latency cycles is the CAS
counter starting at 0. Without this assumption the SMT solver
will find the case where the CAS counter is in the middle of
counting.

7) Spec 7: Write to Idle: The assumption for write to idle
transitions is the write state counter starting at 0. This is for
the same reason as VI-B6.

C. Challenges

Overall for a simple addition, we faced several challenges.
Formal verification for hardware is widely used in industry,
but there is a lack of helpful open documentation. Open
source tools are also lacking in documentation. While we have
access to the source code, any issues with the tools would
require lengthy wait times in submitting issues, or us manually
fixing them. Additionally, while SymbiYosys is free, the actual
formal verification backend is not. Reading counterexamples is
not easy, one must analyze whether or not the counterexample
is a true bug or an impossible case.

VII. FUTURE WORK

Formal verification support is at a good start. Of the 7
specifications, only 1 is a constant property while the rest
are transitions. More properties may be related to addition
interfaces of the memory controller. As of now, only a basic
read-valid interface is supported. If a user wanted to use
AXI Xilinx IPs, the generator would need to include an AXI

interface. This new interface would allow more properties to
check.

This generator still does not support bi-directional ports.
Bi-directional ports are required to get data from the memory
module itself, this is due to the physical nature of memo-
ries. Chisel supports bi-directional ports with the ”Analog”
data type. This data type, unfortunately, is experimental. An
additional setback is that bi-directional ports are also an
experimental of SymbiYosys. To support the actual dataflow
and formal verification, we may look into moving Chisel
versions or sending pull requests to YosysHQ.

VIII. CONCLUSION

While including formal verification support for the SDRAM
controller generator sounds simple, there are several chal-
lenges. Challenges included lack of documentation, paywalls,
and lack of support for several SystemVerilog features. How-
ever, the coverage formal verification provides for the memory
controller is worth the effort. With a small amount of code we
found 2 major bugs with read and write behavior. This small
amount of code allows us to effectively generate a testbench
for users to fall back on if they don’t want to write their own.
We showcased these checks on 2 SDRAM memory modules,
showing that we are able to apply this verification in the field.

ACKNOWLEDGMENT

I would like to thank Assistant Professor Dustin Richmond
for providing me with the evaluation license required to run
the formal verification tools. Without this I would not have
a project for this course. In addition, I would like to thank
Assistant Professor Scott Beamer for guiding me in the initial
creation of the SDRAM Controller Generator and the Scala
programming language.

REFERENCES

[1] Gary Mejia, “GitHub - gmejiamtz/sdram controller generator: A Chisel
hardware generator for SDRAM controllers from their datasheets,”
GitHub, 2024. https://github.com/gmejiamtz/sdram controller generator
(accessed Dec. 14, 2024).

[2] Wikipedia Contributors, “Assertion (software development),” Wikipedia,
Nov. 24, 2024.

[3] E. Seligman, T. Schubert, and A. Kiran, Formal Verification. Elsevier,
2023.

[4] ISSI, ”IS42/45S16800F”, Sept 11, 2019
[5] Winbond, ”W9825G6KH”, Dec 17, 2021

